https://codility.com/programmers/lessons/11-sieve_of_eratosthenes/count_non_divisible/
Question:
You are given a non-empty zero-indexed array A consisting of N integers.
For each number A[i] such that 0 ≤ i < N, we want to count the number of elements of the array that are not the divisors of A[i]. We say that these elements are non-divisors.
For example, consider integer N = 5 and array A such that:
A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 3 A[4] = 6
For the following elements:
class Solution { public int[] solution(int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers, returns a sequence of integers representing the amount of non-divisors.
The sequence should be returned as:
A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 3 A[4] = 6
the function should return [2, 4, 3, 2, 0], as explained above.
Assume that:
For each number A[i] such that 0 ≤ i < N, we want to count the number of elements of the array that are not the divisors of A[i]. We say that these elements are non-divisors.
For example, consider integer N = 5 and array A such that:
A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 3 A[4] = 6
For the following elements:
Write a function:
- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.
class Solution { public int[] solution(int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers, returns a sequence of integers representing the amount of non-divisors.
The sequence should be returned as:
For example, given:
- a structure Results (in C), or
- a vector of integers (in C++), or
- a record Results (in Pascal), or
- an array of integers (in any other programming language).
A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 3 A[4] = 6
the function should return [2, 4, 3, 2, 0], as explained above.
Assume that:
Complexity:
- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..2 * N].
Elements of input arrays can be modified.
- expected worst-case time complexity is O(N*log(N));
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
My Solution:
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package CountNonDivisible; | |
import java.util.*; | |
class Solution { | |
public int[] solution(int[] A) { | |
// main idea: | |
// using "HashMap" to count | |
// map1(key, value) | |
HashMap<Integer, Integer> map1 = new HashMap<>(); | |
// key: the elements, value, count of elements | |
for(int i=0; i< A.length; i++){ | |
if(map1.containsKey(A[i]) == false){ | |
map1.put(A[i], 1); // add new element | |
} | |
else{ | |
map1.put(A[i], map1.get(A[i])+1 ); // count++ | |
} | |
} | |
// map2(key, value) | |
HashMap<Integer, Integer> map2 = new HashMap<>(); | |
// key: the elements, value, count of "number of non-divisors" of elements | |
for( int n : map1.keySet() ){ | |
int numDivisors =0; | |
// find divisors from 1 to sqrt(n) | |
int sqrtN = (int)Math.sqrt(n); | |
for(int i=1; i<=sqrtN; i++ ){ | |
if( n % i == 0){ // means: i could be a divisor | |
int anotherDivisor = n/i; | |
if(map1.containsKey(i) == true ){ | |
numDivisors = numDivisors + map1.get(i); | |
} | |
if(anotherDivisor != i){ // avoid double count (be careful) | |
if(map1.containsKey(anotherDivisor) == true){ | |
numDivisors = numDivisors + map1.get(anotherDivisor); | |
} | |
} | |
} | |
} | |
int numNonDivisors = A.length - numDivisors; | |
map2.put(n, numNonDivisors); | |
} | |
// results: number of non-divisors | |
int[] results = new int[A.length]; | |
for (int i = 0; i < A.length; i++) { | |
results[i] = map2.get(A[i]); | |
} | |
return results; | |
} | |
} |
1. main idea:
// using "HashMap" to count
2. map1(key, value)
// key: the elements,
//value: count of elements
3. map2(key, value)
// key: the elements,
// value: count of "number of non-divisors" of elements
No comments:
Post a Comment